Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.658
Filtrar
1.
Eur J Med Chem ; 266: 116157, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38245976

RESUMO

The metabotropic glutamate (Glu) receptors (mGluRs) are G-protein coupled receptors, which play a central role in modulating excitatory neurotransmission in the central nervous system (CNS). Thus, the development of tool compounds thereto, continues to interest the scientific community. In this study, we report the design and synthesis of new conformationally restricted 2-aminoadipic acid (2AA) 2-4, and glutamic acid 5, 6 analogs, which share the cyclopropane ring as the restrictor. The analogs were characterized at rat mGlu1-8 in an IP-One functional assay. While the 2AA analogs 3a, 4a and CCG-I analog 5a were shown to be selective mGlu2 agonists with low micromolar potencies, CCG-II analog 5b was shown to be a potent full agonist at mGlu2 (EC50 = 82 nM) with ∼15-fold selectivity over mGlu3, >25-fold selectivity over group III, and >60-fold selectivity over group I subtypes. An in silico study was performed to address this significant change (>3500 fold) in potency upon introduction of this methyl group (L-CCG-II vs 5b).


Assuntos
Aminoácidos , Receptores de Glutamato Metabotrópico , Ratos , Animais , Aminoácidos/farmacologia , Glicina , Receptores de Glutamato Metabotrópico/agonistas , Ácido Glutâmico/farmacologia , Sistema Nervoso Central
2.
Sci Adv ; 9(22): eadf1378, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37267369

RESUMO

Allosteric modulators bear great potential to fine-tune neurotransmitter action. Promising targets are metabotropic glutamate (mGlu) receptors, which are associated with numerous brain diseases. Orthosteric and allosteric ligands act in synergy to control the activity of these multidomain dimeric GPCRs. Here, we analyzed the effect of such molecules on the concerted conformational changes of full-length mGlu2 at the single-molecule level. We first established FRET sensors through genetic code expansion combined with click chemistry to monitor conformational changes on live cells. We then used single-molecule FRET and show that orthosteric agonist binding leads to the stabilization of most of the glutamate binding domains in their closed state, while the reorientation of the dimer into the active state remains partial. Allosteric modulators, interacting with the transmembrane domain, are required to stabilize the fully reoriented active dimer. These results illustrate how concerted conformational changes within multidomain proteins control their activity, and how these are modulated by allosteric ligands.


Assuntos
Receptores de Glutamato Metabotrópico , Regulação Alostérica , Ligantes , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/metabolismo , Glutamatos
3.
Psychopharmacology (Berl) ; 240(6): 1247-1260, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37060471

RESUMO

RATIONALE: After a history of intermittent cocaine intake, rats develop patterns of drug use characteristic of substance use disorder. The dorsal striatum is involved in the increased pursuit of cocaine after intermittent drug self-administration experience. Within the dorsal striatum, chronic cocaine use changes metabotropic glutamate type II receptor (mGlu2/3) density and function. OBJECTIVES: We examined the extent to which activity at Glu2/3 receptors mediates responding for cocaine after intermittent cocaine use. METHODS: Male (n = 11) and female (n = 10) Wistar rats self-administered 0.25 mg/kg/infusion cocaine during 10 daily intermittent access (IntA) sessions (5 min ON/25 min OFF, for 5 h/session). We then examined the effects of microinjections of the mGlu2/3 receptor agonist LY379268 (0, 1, and 3 µg/hemisphere) into the ventrolateral part of the dorsal striatum on cocaine self-administration under a progressive ratio schedule of reinforcement. RESULTS: Across 10 IntA sessions, the sexes showed similar levels of cocaine intake. In females only, locomotion significantly increased over sessions, suggesting that female rats developed psychomotor sensitization to self-administered cocaine. After 10 IntA sessions, intra-dorsal striatum LY379268 significantly reduced breakpoints achieved for cocaine, active lever presses, and cocaine infusions earned under progressive ratio. LY379268 had no effects on locomotion or inactive lever presses, indicating no motor effects. CONCLUSIONS: These results suggest that mGlu2/3 receptor activation in the ventrolateral dorsal striatum suppresses incentive motivation for cocaine, and this holds promise for new treatments to manage substance use disorder.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Receptores de Glutamato Metabotrópico , Ratos , Masculino , Feminino , Animais , Cocaína/farmacologia , Motivação , Receptores de Glutamato Metabotrópico/agonistas , Ratos Wistar , Autoadministração , Glutamatos/farmacologia
4.
Brain Res ; 1809: 148349, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36972837

RESUMO

Overactivity of the corticostriatal glutamatergic pathway is documented in Parkinson's disease (PD) and stimulation of presynaptic metabotropic glutamate (mGlu) receptors 4 on these striatal afferents inhibits glutamate release normalizing neuronal activity in the basal ganglia. Moreover, mGlu4 receptors are also expressed in glial cells and are able to modulate glial function making this receptor a potential target for neuroprotection. Hence, we investigated whether foliglurax, a positive allosteric modulator of mGlu4 receptors with high brain exposure after oral administration, has neuroprotective effects in MPTP mice to model early PD. Male mice were treated daily from day 1 to 10 with 1, 3 or 10 mg/kg of foliglurax and administered MPTP on the 5th day then euthanized on the 11th day. Dopamine neuron integrity was assessed with measures of striatal dopamine and its metabolites levels, striatal and nigral dopamine transporter (DAT) binding and inflammation with markers of striatal astrocytes (GFAP) and microglia (Iba1). MPTP lesion produced a decrease in dopamine, its metabolites and striatal DAT specific binding that was prevented by treatment with 3 mg/kg of foliglurax, whereas 1 and 10 mg/kg had no beneficial effect. MPTP mice had increased levels of GFAP; foliglurax treatment (3 mg/kg) prevented this increase. Iba1 levels were unchanged in MPTP mice compared to control mice. There was a negative correlation between dopamine content and GFAP levels. Our results show that positive allosteric modulation of mGlu4 receptors with foliglurax provided neuroprotective effects in the MPTP mouse model of PD.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Antiparkinsonianos , Neurônios Dopaminérgicos , Fármacos Neuroprotetores , Receptores de Glutamato Metabotrópico , Animais , Masculino , Camundongos , Regulação Alostérica/efeitos dos fármacos , Antiparkinsonianos/administração & dosagem , Antiparkinsonianos/farmacologia , Gânglios da Base/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Relação Dose-Resposta a Droga , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/metabolismo , Astrócitos/metabolismo , Microglia/metabolismo , Neostriado/efeitos dos fármacos , Neostriado/metabolismo
5.
Pharmacol Biochem Behav ; 223: 173532, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36822254

RESUMO

Aberrant cortical oscillations in the beta and gamma range are associated with symptoms of schizophrenia and other psychiatric conditions. We have thus investigated the ability of anterior cingulate cortex (ACC) in vitro to generate beta and gamma oscillations, and how these are affected by Group II metabotropic glutamate (mGlu) receptor activation and blockade of N-methyl-d-aspartate (NMDA) receptors. Activation of Group II mGlu receptors, and mGlu2 specifically, with orthosteric agonists reduced the power of both beta and gamma oscillations in ACC without a significant effect on oscillation peak frequencies. The NMDA receptor blocker phencyclidine (PCP), known to evoke certain schizophrenia-like symptoms in humans, elevated the power of beta oscillations in ACC and caused a shift in oscillation frequency from the gamma range to the beta range. These enhanced beta oscillations were reduced by the Group II mGlu receptor agonists. These results show that Group II mGlu receptors, and specifically mGlu2, modulate network oscillations. Furthermore, attenuation of the effect of PCP suggests that mGlu2 receptors may stabilise aberrant network activity. These results underline the importance of Group II mGlu receptors, and particularly mGlu2, as targets for the treatment of neuropsychiatric and neurodegenerative diseases.


Assuntos
Receptores de Glutamato Metabotrópico , Humanos , Ratos , Animais , Receptores de Glutamato Metabotrópico/agonistas , Fenciclidina , Giro do Cíngulo/metabolismo , N-Metilaspartato
6.
Pharmacol Biochem Behav ; 221: 173474, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36244526

RESUMO

The serotonergic and glutamatergic neurotransmitter systems have been implicated in the pathophysiology of schizophrenia, and increasing evidence shows that they interact functionally. Of note, the Gq/11-coupled serotonin 5-HT2A (5-HT2A) and the Gi/o-coupled metabotropic glutamate type 2 (mGlu2) receptors have been demonstrated to assemble into a functional heteromeric complex that modulates the function of each individual receptor. For conformation of the heteromeric complex, corresponding transmembrane-4 segment of 5-HT2A and mGlu2 are required. The 5-HT2A/mGlu2 heteromeric complex is necessary for the activation of Gq/11 proteins and for the subsequent increase in the levels of the intracellular messenger Ca2+. Furthermore, signaling via the heteromeric complex is dysregulated in the post-mortem brains of patients with schizophrenia, and could be linked to altered cortical function. From a behavioral perspective, this complex contributes to the hallucinatory and antipsychotic behaviors associated with 5-HT2A and mGlu2/3 agonists, respectively. Synaptic and epigenetic mechanisms have also been found to be significantly associated with the mGlu2/5-HT2A heteromeric complex. This review summarizes the role of crosstalk between mGlu2 and 5-HT2A in the mechanism of antipsychotic effects and introduces recent key advancements on this topic.


Assuntos
Antipsicóticos , Receptores de Glutamato Metabotrópico , Esquizofrenia , Humanos , Antipsicóticos/farmacologia , Serotonina , Ácido Glutâmico/metabolismo , Receptores de Glutamato Metabotrópico/agonistas , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo , Agonistas de Aminoácidos Excitatórios , Receptor 5-HT2A de Serotonina
7.
Pharmacol Biochem Behav ; 219: 173452, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36030890

RESUMO

There is still no effective treatment for central nervous system (CNS) pathologies, including cerebral ischemia, neurotrauma, and neurodegenerative diseases in which the Glu/GABA balance is disturbed with associated excitotoxicity. It is thus important to search for new efficacious therapeutic strategies. Preclinical studies on the role of metabotropic glutamate receptors (mGluRs) in neuroprotection conducted over the years show that these receptors may have therapeutic potential in these CNS disorders. However, clinical trials, especially for treating Parkinson's disease, have been unsatisfactory. This review focuses on the specific role of group III mGluRs in neuroprotection in experimental in vitro and in vivo models of excitotoxicity/neurotoxicity using neurotoxins as well as ischemia, traumatic brain injury, and neurodegenerative diseases such as Parkinson's disease, Alzheimer's diseases, and multiple sclerosis. The review highlights recent preclinical studies in which group III mGluR ligands (especially those acting at mGluR4 or mGluR7) were administered after damage, thus emphasizing the importance of the therapeutic time window in the treatment of ischemic stroke and traumatic brain injury. From a clinical standpoint, the review also highlights studies using group III mGluR agonists with favorable neuroprotective efficacy (histological and functional) in experimental ischemic stroke, including healthy normotensive and-hypertensive rats. This review also summarizes possible mechanisms underlying the neuroprotective activity of the group III mGluR ligands, which may be helpful in developing more effective and safe therapeutic strategies. Therefore, to fully assess the role of these receptors in neuroprotection, it is necessary to uncover new selective ligands, primarily those stimulating mGlu4 and mGlu7 receptors.


Assuntos
Lesões Encefálicas Traumáticas , AVC Isquêmico , Doenças Neurodegenerativas , Doença de Parkinson , Receptores de Glutamato Metabotrópico , Animais , Neuroproteção , Ratos , Receptores de Glutamato Metabotrópico/agonistas
8.
Eur J Nucl Med Mol Imaging ; 49(13): 4338-4357, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35852558

RESUMO

PURPOSE: Modern neuroimaging lacks the tools necessary for whole-brain, anatomically dense neuronal damage screening. An ideal approach would include unbiased histopathologic identification of aging and neurodegenerative disease. METHODS: We report the postmortem application of multiscale X-ray phase-contrast computed tomography (X-PCI-CT) for the label-free and dissection-free organ-level to intracellular-level 3D visualization of distinct single neurons and glia. In deep neuronal populations in the brain of aged wild-type and of 3xTgAD mice (a triply-transgenic model of Alzheimer's disease), we quantified intracellular hyperdensity, a manifestation of aging or neurodegeneration. RESULTS: In 3xTgAD mice, the observed hyperdensity was identified as amyloid-ß and hyper-phosphorylated tau protein deposits with calcium and iron involvement, by correlating the X-PCI-CT data to immunohistochemistry, X-ray fluorescence microscopy, high-field MRI, and TEM. As a proof-of-concept, X-PCI-CT was used to analyze hippocampal and cortical brain regions of 3xTgAD mice treated with LY379268, selective agonist of group II metabotropic glutamate receptors (mGlu2/3 receptors). Chronic pharmacologic activation of mGlu2/3 receptors significantly reduced the hyperdensity particle load in the ventral cortical regions of 3xTgAD mice, suggesting a neuroprotective effect with locoregional efficacy. CONCLUSIONS: This multiscale micro-to-nano 3D imaging method based on X-PCI-CT enabled identification and quantification of cellular and sub-cellular aging and neurodegeneration in deep neuronal and glial cell populations in a transgenic model of Alzheimer's disease. This approach quantified the localized and intracellular neuroprotective effects of pharmacological activation of mGlu2/3 receptors.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Receptores de Glutamato Metabotrópico , Animais , Camundongos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Cálcio , Senescência Celular , Ferro , Camundongos Transgênicos , Neuroimagem , Fármacos Neuroprotetores/farmacologia , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/metabolismo , Proteínas tau/metabolismo , Raios X
9.
Int J Mol Sci ; 23(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35806000

RESUMO

Birth asphyxia causes brain injury in neonates, but a fully successful treatment has yet to be developed. This study aimed to investigate the effect of group II mGlu receptors activation after experimental birth asphyxia (hypoxia-ischemia) on the expression of factors involved in apoptosis and neuroprotective neurotrophins. Hypoxia-ischemia (HI) on 7-day-old rats was used as an experimental model. The effects of intraperitoneal application of mGluR2 agonist LY379268 (5 mg/kg) and the specific mGluR3 agonist NAAG (5 mg/kg) (1 h or 6 h after HI) on apoptotic processes and initiation of the neuroprotective mechanism were investigated. LY379268 and NAAG applied shortly after HI prevented brain damage and significantly decreased pro-apoptotic Bax and HtrA2/Omi expression, increasing expression of anti-apoptotic Bcl-2. NAAG or LY379268 applied at both times also decreased HIF-1α formation. HI caused a significant decrease in BDNF concentration, which was restored after LY379268 or NAAG administration. HI-induced increase in GDNF concentration was decreased after administration of LY379268 or NAAG. Our results show that activation of mGluR2/3 receptors shortly after HI prevents brain damage by the inhibition of excessive glutamate release and apoptotic damage decrease. mGluR2 and mGluR3 agonists produced comparable results, indicating that both receptors may be a potential target for early treatment in neonatal HI.


Assuntos
Asfixia , Lesões Encefálicas , Fator Neurotrófico Derivado do Encéfalo , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Receptores de Glutamato Metabotrópico , Aminoácidos/farmacologia , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Asfixia/metabolismo , Asfixia/patologia , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Dipeptídeos/farmacologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Hipóxia/metabolismo , Hipóxia/patologia , Fármacos Neuroprotetores/farmacologia , Ratos , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/metabolismo
10.
Neuropharmacology ; 204: 108886, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34813860

RESUMO

Metabotropic glutamate receptors (mGluRs) have been discovered almost four decades ago. Since then, their pharmacology has been largely developed as well as their structural organization. Indeed mGluRs are attractive therapeutic targets for numerous psychiatric and neurological disorders because of their modulating role of synaptic transmission. The more recent drug discovery programs have mostly concentrated on allosteric modulators. However, orthosteric agonists and antagonists have remained unavoidable pharmacological tools as, although not expected, many of them can reach the brain, or can be modified to reach the brain. This review focuses on the most common orthosteric ligands as well as on the few allosteric modulators interacting with the glutamate binding domain. The 3D-structures of these ligands at their binding sites are reported. For most of them, X-Ray structures or docked homology models are available. Because of the high conservation of the binding site, subtype selective agonists were not easy to find. Yet, some were discovered when extending their chemical structures in order to reach selective sites of the receptors.


Assuntos
Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/metabolismo , Regulação Alostérica , Sítios de Ligação , Descoberta de Drogas , Humanos , Ligantes , Conformação Molecular , Terapia de Alvo Molecular , Doenças do Sistema Nervoso/tratamento farmacológico , Receptores de Glutamato Metabotrópico/química , Receptores de Glutamato Metabotrópico/fisiologia , Transmissão Sináptica
11.
Cell Rep ; 37(5): 109950, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34731619

RESUMO

Evidence for prefrontal cortical (PFC) GABAergic dysfunction is one of the most consistent findings in schizophrenia and may contribute to cognitive deficits. Recent studies suggest that the mGlu1 subtype of metabotropic glutamate receptor regulates cortical inhibition; however, understanding the mechanisms through which mGlu1 positive allosteric modulators (PAMs) regulate PFC microcircuit function and cognition is essential for advancing these potential therapeutics toward the clinic. We report a series of electrophysiology, optogenetic, pharmacological magnetic resonance imaging, and animal behavior studies demonstrating that activation of mGlu1 receptors increases inhibitory transmission in the prelimbic PFC by selective excitation of somatostatin-expressing interneurons (SST-INs). An mGlu1 PAM reverses cortical hyperactivity and concomitant cognitive deficits induced by N-methyl-d-aspartate (NMDA) receptor antagonists. Using in vivo optogenetics, we show that prelimbic SST-INs are necessary for mGlu1 PAM efficacy. Collectively, these findings suggest that mGlu1 PAMs could reverse cortical GABAergic deficits and exhibit efficacy in treating cognitive dysfunction in schizophrenia.


Assuntos
Antipsicóticos/farmacologia , Comportamento Animal/efeitos dos fármacos , Cognição/efeitos dos fármacos , Disfunção Cognitiva/tratamento farmacológico , Agonistas de Aminoácidos Excitatórios/farmacologia , Glicina/análogos & derivados , Interneurônios/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Receptores de Glutamato Metabotrópico/agonistas , Resorcinóis/farmacologia , Esquizofrenia/tratamento farmacológico , Psicologia do Esquizofrênico , Somatostatina/metabolismo , Animais , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/psicologia , Modelos Animais de Doenças , Feminino , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Glicina/farmacologia , Interneurônios/metabolismo , Masculino , Memória de Curto Prazo/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Inibição Neural/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiopatologia , Ratos Sprague-Dawley , Receptores de Glutamato Metabotrópico/metabolismo , Esquizofrenia/metabolismo , Esquizofrenia/fisiopatologia , Somatostatina/genética
12.
Nat Commun ; 12(1): 5426, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521824

RESUMO

Much hope in drug development comes from the discovery of positive allosteric modulators (PAM) that display target subtype selectivity and act by increasing agonist potency and efficacy. How such compounds can allosterically influence agonist action remains unclear. Metabotropic glutamate receptors (mGlu) are G protein-coupled receptors that represent promising targets for brain diseases, and for which PAMs acting in the transmembrane domain have been developed. Here, we explore the effect of a PAM on the structural dynamics of mGlu2 in optimized detergent micelles using single molecule FRET at submillisecond timescales. We show that glutamate only partially stabilizes the extracellular domains in the active state. Full activation is only observed in the presence of a PAM or the Gi protein. Our results provide important insights on the role of allosteric modulators in mGlu activation, by stabilizing the active state of a receptor that is otherwise rapidly oscillating between active and inactive states.


Assuntos
Ácido Glutâmico/farmacologia , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/química , Regulação Alostérica/efeitos dos fármacos , Sítio Alostérico , Aminoácidos/química , Aminoácidos/farmacologia , Compostos de Bifenilo/química , Compostos de Bifenilo/farmacologia , Compostos Bicíclicos com Pontes/química , Compostos Bicíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/química , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Domínio Catalítico , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Ésteres do Colesterol/química , Ésteres do Colesterol/farmacologia , Diosgenina/análogos & derivados , Diosgenina/química , Diosgenina/farmacologia , Dissacarídeos/química , Dissacarídeos/farmacologia , Transferência Ressonante de Energia de Fluorescência , Expressão Gênica , Glucosídeos/química , Glucosídeos/farmacologia , Glicolipídeos/química , Glicolipídeos/farmacologia , Células HEK293 , Humanos , Indanos/química , Indanos/farmacologia , Micelas , Octoxinol/química , Octoxinol/farmacologia , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Imagem Individual de Molécula , Xantenos/química , Xantenos/farmacologia
13.
Bioorg Med Chem Lett ; 50: 128342, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34461178

RESUMO

This letter describes synthesis and evaluation of two series of dual mGlu2/mGlu3 positive allosteric modulators with moderate mGlu3 potency and robust mGlu2 potency in thallium flux assays. These compounds were profiled their ability to modulate mGlu3-mediated signaling in central neurons by co-application of a selective mGlu2 NAM to isolate mGlu3-selective effects. Using acute mouse brain slices from the prefrontal cortex, potentiation of group II mGlu receptor agonist Ca2+ signaling in PFC pyramidal cells with either the dual mGlu2/mGlu3 PAM 16e or 23d demonstrated effects mediated selectively via mGlu3.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Neurônios/metabolismo , Receptores de Glutamato Metabotrópico/administração & dosagem , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Linhagem Celular , Desenho de Fármacos , Humanos , Camundongos , Estrutura Molecular , Neurônios/efeitos dos fármacos , Córtex Pré-Frontal/citologia , Células Piramidais , Receptores de Glutamato Metabotrópico/genética , Relação Estrutura-Atividade
14.
Neurosci Lett ; 763: 136180, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34416343

RESUMO

We have found that daily subcutaneous injection with a maximum tolerated dose of the mGluR2/3 agonist LY379268 (20 mg/kg) beginning at 4 weeks of age dramatically improves the motor, neuronal and neurochemical phenotype in R6/2 mice, a rapidly progressing transgenic model of Huntington's disease (HD). We also previously showed that the benefit of daily LY379268 in R6/2 mice was associated with increases in corticostriatal brain-derived neurotrophic factor (BDNF), and in particular was associated with a reduction in enkephalinergic striatal projection neuron loss. In the present study, we show that daily LY379268 also rescues expression of BDNF by neurons of the thalamic parafascicular nucleus in R6/2 mice, which projects prominently to the striatum, and this increase too is linked to the rescue of enkephalinergic striatal neurons. Thus, LY379268 may protect enkephalinergic striatal projection neurons from loss by boosting BDNF production and delivery via both the corticostriatal and thalamostriatal projection systems. These results suggest that chronic treatment with mGluR2/3 agonists may represent an approach for slowing enkephalinergic neuron loss in HD, and perhaps progression in general.


Assuntos
Aminoácidos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Doença de Huntington/tratamento farmacológico , Núcleos Intralaminares do Tálamo/efeitos dos fármacos , Aminoácidos/uso terapêutico , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Corpo Estriado/citologia , Corpo Estriado/patologia , Modelos Animais de Doenças , Feminino , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Doença de Huntington/patologia , Injeções Subcutâneas , Núcleos Intralaminares do Tálamo/metabolismo , Núcleos Intralaminares do Tálamo/patologia , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/metabolismo
15.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34385321

RESUMO

There is growing interest in developing biologics due to their high target selectivity. The G protein-coupled homo- and heterodimeric metabotropic glutamate (mGlu) receptors regulate many synapses and are promising targets for the treatment of numerous brain diseases. Although subtype-selective allosteric small molecules have been reported, their effects on the recently discovered heterodimeric receptors are often not known. Here, we describe a nanobody that specifically and fully activates homodimeric human mGlu4 receptors. Molecular modeling and mutagenesis studies revealed that the nanobody acts by stabilizing the closed active state of the glutamate binding domain by interacting with both lobes. In contrast, this nanobody does not activate the heterodimeric mGlu2-4 but acts as a pure positive allosteric modulator. These data further reveal how an antibody can fully activate a class C receptor and bring further evidence that nanobodies represent an alternative way to specifically control mGlu receptor subtypes.


Assuntos
Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/metabolismo , Anticorpos de Domínio Único , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Modelos Biológicos , Mutação , Ligação Proteica , Conformação Proteica , Receptores de Glutamato Metabotrópico/genética
16.
Neurobiol Dis ; 159: 105466, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34390832

RESUMO

Group I metabotropic glutamate receptors (mGluRs), mGluR1 and mGluR5, in the spinal cord are implicated in nociceptive transmission and plasticity through G protein-mediated second messenger cascades leading to the activation of various protein kinases such as extracellular signal-regulated kinase (ERK). In this study, we demonstrated that cytohesin-2, a guanine nucleotide exchange factor for ADP ribosylation factors (Arfs), is abundantly expressed in subsets of excitatory interneurons and projection neurons in the superficial dorsal horn. Cytohesin-2 is enriched in the perisynapse on the postsynaptic membrane of dorsal horn neurons and forms a protein complex with mGluR5 in the spinal cord. Central nervous system-specific cytohesin-2 conditional knockout mice exhibited reduced mechanical allodynia in inflammatory and neuropathic pain models. Pharmacological blockade of cytohesin catalytic activity with SecinH3 similarly reduced mechanical allodynia and inhibited the spinal activation of Arf6, but not Arf1, in both pain models. Furthermore, cytohesin-2 conditional knockout mice exhibited reduced mechanical allodynia and ERK1/2 activation following the pharmacological activation of spinal mGluR1/5 with 3,5-dihydroxylphenylglycine (DHPG). The present study suggests that cytothesin-2 is functionally associated with mGluR5 during the development of mechanical allodynia through the activation of Arf6 in spinal dorsal horn neurons.


Assuntos
Fator 6 de Ribosilação do ADP/metabolismo , Proteínas Ativadoras de GTPase/genética , Hiperalgesia/genética , Neuralgia/genética , Células do Corno Posterior/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Medula Espinal/metabolismo , Fator 1 de Ribosilação do ADP/efeitos dos fármacos , Fator 1 de Ribosilação do ADP/metabolismo , Fator 6 de Ribosilação do ADP/efeitos dos fármacos , Animais , Proteínas Ativadoras de GTPase/antagonistas & inibidores , Proteínas Ativadoras de GTPase/metabolismo , Hiperalgesia/metabolismo , Inflamação/genética , Inflamação/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/farmacologia , Camundongos , Camundongos Knockout , Neuralgia/metabolismo , Densidade Pós-Sináptica/metabolismo , Células do Corno Posterior/efeitos dos fármacos , Receptor de Glutamato Metabotrópico 5/agonistas , Receptores de Glutamato Metabotrópico/agonistas , Medula Espinal/efeitos dos fármacos , Corno Dorsal da Medula Espinal , Triazóis/farmacologia
17.
J Pharmacol Exp Ther ; 379(1): 74-84, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34330748

RESUMO

Huntington's disease (HD) is an autosomal dominant neurodegenerative disease that leads to progressive motor impairments with no available disease-modifying treatment. Current evidence indicates that exacerbated postsynaptic glutamate signaling in the striatum plays a key role in the pathophysiology of HD. However, it remains unclear whether reducing glutamate release can be an effective approach to slow the progression of HD. Here, we show that the activation of metabotropic glutamate receptors 2 and 3 (mGluR2/3), which inhibit presynaptic glutamate release, improves HD symptoms and pathology in heterozygous zQ175 knockin mice. Treatment of both male and female zQ175 mice with the potent and selective mGluR2/3 agonist LY379268 for either 4 or 8 weeks improves both limb coordination and locomotor function in all mice. LY379268 also reduces mutant huntingtin aggregate formation, neuronal cell death, and microglial activation in the striatum of both male and female zQ175 mice. The reduction in mutant huntingtin aggregates correlates with the activation of a glycogen synthase kinase 3ß-dependent autophagy pathway in male, but not female, zQ175 mice. Furthermore, LY379268 reduces both Akt and ERK1/2 phosphorylation in male zQ175 mice but increases both Akt and ERK1/2 phosphorylation in female zQ175 mice. Taken together, our results indicate that mGluR2/3 activation mitigates HD neuropathology in both male and female mice but is associated with the differential activation and inactivation of cell signaling pathways in heterozygous male and female zQ175 mice. This further highlights the need to take sex into consideration when developing future HD therapeutics. SIGNIFICANCE STATEMENT: The mGluR2/3 agonist LY379268 improves motor impairments and reduces pathology in male and female zQ175 Huntington's disease mice. The beneficial outcomes of LY379268 treatment in Huntington's disease mice were mediated by divergent cell signaling pathways in both sexes. We provide evidence that mGluR2/3 agonists can be repurposed for the treatment of Huntington's disease, and we emphasize the importance of investigating sex as a biological variable in preclinical disease-modifying studies.


Assuntos
Heterozigoto , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Desempenho Psicomotor/fisiologia , Receptores de Glutamato Metabotrópico/metabolismo , Aminoácidos/farmacologia , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Feminino , Força da Mão/fisiologia , Doença de Huntington/genética , Masculino , Camundongos , Camundongos Transgênicos , Desempenho Psicomotor/efeitos dos fármacos , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/genética
18.
J Neurosci ; 41(35): 7340-7349, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34290083

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease marked by the accumulation of amyloid-ß (Aß) plaques and neurofibrillary tangles. Aß oligomers cause synaptic dysfunction early in AD by enhancing long-term depression (LTD; a paradigm for forgetfulness) via metabotropic glutamate receptor (mGluR)-dependent regulation of striatal-enriched tyrosine phosphatase (STEP61). Reelin is a neuromodulator that signals through ApoE (apolipoprotein E) receptors to protect the synapse against Aß toxicity (Durakoglugil et al., 2009) Reelin signaling is impaired by ApoE4, the most important genetic risk factor for AD, and Aß-oligomers activate metabotropic glutamate receptors (Renner et al., 2010). We therefore asked whether Reelin might also affect mGluR-LTD. To this end, we induced chemical mGluR-LTD using DHPG (Dihydroxyphenylglycine), a selective mGluR5 agonist. We found that exogenous Reelin reduces the DHPG-induced increase in STEP61, prevents the dephosphorylation of GluA2, and concomitantly blocks mGluR-mediated LTD. By contrast, Reelin deficiency increased expression of Ca2+-permeable GluA2-lacking AMPA receptors along with higher STEP61 levels, resulting in occlusion of DHPG-induced LTD in hippocampal CA1 neurons. We propose a model in which Reelin modulates local protein synthesis as well as AMPA receptor subunit composition through modulation of mGluR-mediated signaling with implications for memory consolidation or neurodegeneration.SIGNIFICANCE STATEMENT Reelin is an important neuromodulator, which in the adult brain controls synaptic plasticity and protects against neurodegeneration. Amyloid-ß has been shown to use mGluRs to induce synaptic depression through endocytosis of NMDA and AMPA receptors, a mechanism referred to as LTD, a paradigm of forgetfulness. Our results show that Reelin regulates the phosphatase STEP, which plays an important role in neurodegeneration, as well as the expression of calcium-permeable AMPA receptors, which play a role in memory formation. These data suggest that Reelin uses mGluR LTD pathways to regulate memory formation as well as neurodegeneration.


Assuntos
Depressão Sináptica de Longo Prazo/fisiologia , Neurônios/fisiologia , Proteínas Tirosina Fosfatases não Receptoras/fisiologia , Receptores de Glutamato Metabotrópico/fisiologia , Proteína Reelina/fisiologia , 2-Amino-5-fosfonovalerato/farmacologia , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/efeitos dos fármacos , Cálcio/fisiologia , Células Cultivadas , Córtex Cerebral/citologia , Indução Enzimática/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Memória/fisiologia , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/farmacologia , Camundongos , Degeneração Neural/fisiopatologia , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Fosforilação/efeitos dos fármacos , Picrotoxina/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/metabolismo , Receptores de Glutamato Metabotrópico/agonistas , Proteínas Recombinantes/metabolismo , Proteína Reelina/deficiência , Proteína Reelina/genética
19.
J Med Chem ; 64(12): 8607-8620, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34080424

RESUMO

Our previous scaffold-hopping attempts resulted in dihydropyrazino-benzimidazoles as metabotropic glutamate receptor-2 (mGluR2) positive allosteric modulators (PAMs) with suboptimal drug-like profiles. Here, we report an alternative fragment-based optimization strategy applied on the new dihydropyrazino-benzimidazolone scaffold. Analyzing published high-affinity mGluR2 PAMs, we used a pharmacophore-guided approach to identify suitable growing vectors and optimize the scaffold in these directions. This strategy resulted in a new fragment like lead (34) with improved druglike properties that were translated to sufficient pharmacokinetics and validated proof-of-concept studies in migraine. Gratifyingly, compound 34 showed reasonable activity in the partial infraorbital nerve ligation, a migraine disease model that might open this indication for mGluR2 PAMs.


Assuntos
Benzimidazóis/uso terapêutico , Agonistas de Aminoácidos Excitatórios/uso terapêutico , Transtornos de Enxaqueca/tratamento farmacológico , Pirazinas/uso terapêutico , Receptores de Glutamato Metabotrópico/agonistas , Animais , Benzimidazóis/síntese química , Benzimidazóis/farmacocinética , Agonistas de Aminoácidos Excitatórios/síntese química , Agonistas de Aminoácidos Excitatórios/farmacocinética , Masculino , Estrutura Molecular , Estudo de Prova de Conceito , Pirazinas/síntese química , Pirazinas/farmacocinética , Ratos Wistar , Relação Estrutura-Atividade
20.
PLoS One ; 16(5): e0251495, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34010316

RESUMO

Baroreflex dysfunction is partly implicated in hypertension and one responsible region is the dorsal medulla oblongata including the nucleus tractus solitarius (NTS). NTS neurons receive and project glutamatergic inputs to subsequently regulate blood pressure, while G-protein-coupled metabotropic glutamate receptors (mGluRs) play a modulatory role for glutamatergic transmission in baroreflex pathways. Stimulating group II mGluR subtype 2 and 3 (mGluR2/3) in the brainstem can decrease blood pressure and sympathetic nervous activity. Here, we hypothesized that the chronic stimulation of mGluR2/3 in the dorsal medulla oblongata can alleviate hypertensive development via the modulation of autonomic nervous activity in young, spontaneously hypertensive rats (SHRs). Compared with that in the sham control group, chronic LY379268 application (mGluR2/3 agonist; 0.40 µg/day) to the dorsal medulla oblongata for 6 weeks reduced the progression of hypertension in 6-week-old SHRs as indicated by the 40 mmHg reduction in systolic blood pressure and promoted their parasympathetic nervous activity as evidenced by the heart rate variability. No differences in blood catecholamine levels or any echocardiographic indices were found between the two groups. The improvement of reflex bradycardia, a baroreflex function, appeared after chronic LY379268 application. The mRNA expression level of mGluR2, but not mGluR3, in the dorsal medulla oblongata was substantially reduced in SHRs compared to that of the control strain. In conclusion, mGluR2/3 signaling might be responsible for hypertension development in SHRs, and modulating mGluR2/3 expression/stimulation in the dorsal brainstem could be a novel therapeutic strategy for hypertension via increasing the parasympathetic activity.


Assuntos
Aminoácidos/uso terapêutico , Anti-Hipertensivos/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Hipertensão/tratamento farmacológico , Bulbo/efeitos dos fármacos , Receptores de Glutamato Metabotrópico/agonistas , Aminoácidos/farmacologia , Animais , Anti-Hipertensivos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Hipertensão/fisiopatologia , Masculino , Bulbo/fisiopatologia , Ratos Endogâmicos SHR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...